Jack Marchant

Principal Software Engineer @ Deputy

Twitter | GitHub

Understanding concurrency in Elixir

Concurrency in Elixir is a big selling point for the language, but what does it really mean for the code that we write in Elixir? It all comes down to Processes. Thanks to the Erlang Virtual Machine, upon which Elixir is built, we can create process threads that aren't actual processes on your machine, but in the Erlang VM. This means that in an Elixir application we can create thousands of Erlang processes without the application skipping a beat.

One function that enables Elixir developers to create processes is spawn/1. Spawn takes a single argument, which can either be an anonymous or named function and will create an isolated context inside a new process for the function to be run. Typically, when we invoke a function it is run in the main process thread with all of the rest of your code. There are two things to be aware of when doing this:

  1. When running application code within a single (main) process, if your code fails due to a bug or otherwise, it will stop the rest of the application from responding, and will be in a crashed state.
  2. The process thread which is currently running your code, will be blocked until the execution of the function completes. This means that it's blocking other code from running, and is synchronous.

Let's break down each of these points to understand their meaning.

Let it crash

In Elixir, a common turn of phrase is to "let it crash" - it being the current process - and if you're just coming to Elixir from another language, as most people are, it can be confusing to understand exactly what this means. When we follow the "Let it crash" principle, it should always be a separate process so that other parts of the application are unaffected. When we use the Phoenix Framework, each HTTP request is handled in a separate process, created for a single purpose. If your application needed to serve thousands of requests simultaneously, then Phoenix (and by extension Cowboy - an Erlang-based HTTP server) would create thousands of requests, each in complete isolation. Doing this means you can crash the current process, i.e. a single HTTP request and it would not affect the rest of the application.

Similarly, if we have an application that is not in a web context, we can create a supervision tree to handle any failures. The added benefit of using a supervision tree is that you can also determine a strategy for restarting any child processes based on the purpose of said processes. Structuring an application in this way, means that you can isolate failures, which is the purpose of letting things crash - because if they're not affecting the main process thread, then it can be handled appropriately.

Asynchronous Elixir

To demonstrate asynchronous elixir, it's important to understand what typically happens with your code when it is executed synchronously. Think about enumerating over a list:

Enum.each(1..10, fn n -> IO.puts n end)

When this code runs, the process in which it is running is blocked until it is finished enumerating over the list. You can see this more clearly by changing the range 1..10 to 1..10_000_000 and running it inside an iex shell. You'll notice that you can't do anything else in that process until it's done enumerating. This is code executing synchronously.

Asynchronous code can be particularly useful if you have large amounts of work that can be done concurrently. To do this in Elixir we can use the spawn/1 function to create a new process in which to do the work. When application code executes inside of a process, it can run without blocking any code in other processes. Similar to the previous example, we can enumerate over a list but this time we'll execute the output asynchronously:

Enum.map(1..10, fn number -> 
  spawn(fn -> 
    IO.puts number

You'll notice when you run this code the numbers aren't output in order like they were in the synchronous example. This is because each process is started and executes in an independent order to any others.

This is great when all of your code works perfectly, but in the real world, you will have to expect there to be some failures, so to replicate this real-world scenario, we can raise an exception to illustrate something not executing correctly.

Enum.each(1..10, fn number ->
  spawn(fn ->
    if rem(number, 2) == 0 do
      raise "the roof with number #{number}"

When this code runs it will raise an exception for all of the even numbers within the 1..10 range. We can see however, for all the odd numbers, the code executes correctly and outputs the number. In a larger context this would mean that failures are not affecting the main process where the application is running, and that any failures within any child processes are also not stopping anything in the main process, so any other code can continue to execute.

In a real world application, you might want to handle any cases where a process does crash, and thankfully there are a few constructs built in to Elixir that abstract away some of the necessary code to send and receive messages that you would need to handle success and failures in processes with spawn/1. One such construct is the Task module, which is perfect for once-off asynchronous tasks, as we were doing earlier. In particular, the async/1 and await/2 link the calling process with the new one created in Task.async/1. There are many other possibilities using Tasks, and I think they're great for getting started working with processes in Elixir.

. . .

how does a relational database index really work

A common question in software engineering interviews is how can you speed up a slow query? In this post I want to explain one answer to this question, which is: to add an index to the table the query is performed on.

refactoring for performance

I spend most of my time thinking about performance improvements. Refactoring is tricky work, even more so when you’re unfamiliar with the feature or part of the codebase.

exploring async php

Asynchronous programming is a foundational building block for scaling web applications due to the increasing need to do more in each web request. A typical example of this is sending an email as part of a request.

maintaining feature flags in a product engineering team

I have mixed feelings about feature flags. They are part of the product development workflow and you would be hard pressed to find a product engineering team that doesn’t use them. Gone are the days of either shipping and hoping the code will work first time or testing the life out of a feature so much that it delays the project.

technical interviewing

When I first started interviewing candidates for engineering roles, I was very nervous. The process can be quite daunting as both an interviewer and interviewee. The goal for the interviewer is to assess the candidate for their technical capabilities and make a judgement on whether you think they should move to the next round (there’s always a next round). Making a judgement on someone after an hour, sometimes a bit longer, is hard and error prone.

using a dependency injection container to decouple code

Dependency Injection is the method of passing objects to another (usually during instantiation) to invert the dependency created when you use an object. A Container is often used as a collection of the objects used in your system, to achieve separation between usage and instantiation.

3 tips to help with working from home

Working from home has been thrust upon those lucky enough to still have a job. Many aren’t sure how to cope, some are trying to find ways to help them through the day. Make no mistake, this is not a normal remote working environment we find ourselves in, but nonetheless we should find ways to embrace it.

making software a three step process

One of the most useful tips that has guided much of my decision over the years has been this simple principle: three steps, executed in sequential order;

help me help you code review

Code Reviews are one of the easiest ways to help your team-mates. There are a number of benefits for both the reviewer and pull request author:

a pratical guide to test driven development

It’s been a while since I last wrote about why testing is important, but in this post I thought I would expand on that and talk about why not only unit testing is important, but how a full spectrum of automated tests can improve productivity, increase confidence pushing code and help keep users happy.

facade pattern

Design Patterns allow you to create abstractions that decouple sections of a codebase with the purpose of making a change to the code later a much easier process.

the problem with elixir umbrella apps

Umbrella apps are big projects that contain multiple mix projects. Using umbrella apps feels more like getting poked in the eye from an actual umbrella.

broken windows

Ever get the feeling that adding this "one little hack", a couple of lines of code, won't have much of an impact on the rest of the codebase? You think nothing of it and add it, convincing your team members it was the correct decision to get this new feature over the line. In theory, and generally speaking, I would kind of agree with doing it, but every hack is different so it's hard to paint them all with the same brush. If you've been doing software development for long enough you can see this kind of code coming from a mile away. It's the kind of code that can haunt your dreams if you're not careful.

lonestar elixir 2019

Last week was Lonestar ElixirConf 2019 held in Austin, Texas. The conference ran over 2 days and was the first Elixir conference I had been to.

genserver async concurrent tasks

In most cases I have found inter-process communication to be an unnecessary overhead for the work I have been doing. Although Elixir is known for this (along with Erlang), it really depends on what you’re trying to achieve and processes shouldn’t be spawned just for the fun of it. I have recently come across a scenario where I thought having a separate process be responsible for performing concurrent and asynchronous jobs would be the best way to approach the problem. In this article I will explain the problem and the solution.

best practices third party integrations

When we think about what an application does, it's typical to think of how it behaves in context of its dependencies. For example, we could say a ficticious application sync's data with a third-party CRM.

you might not need a genserver

When you're browsing your way through Elixir documentation or reading blog posts (like this one), there's no doubt you'll come across a GenServer. It is perhaps one of the most overused modules in the Elixir standard library, simply because it's a good teaching tool for abstractions around processes. It can be confusing though, to know when to reach for your friendly, neighbourhood GenServer.

offset cursor pagination

Typically in an application with a database, you might have more records than you can fit on a page or in a single result set from a query. When you or your users want to retrieve the next page of results, two common options for paginating data include:


Protocols are a way to implement polymorphism in Elixir. We can use it to apply a function to multiple object types or structured data types, which are specific to the object itself. There are two steps; defining a protocol in the form of function(s), and one or many implementations for that protocol.


Recently, I've been writing a tonne of Elixir code, some Phoenix websites and a few other small Elixir applications. One thing that was bugging me every time I would create a new project is that I would want to add Docker to it either straight away because I knew there would be a dependency on Redis or Postgres etc, or halfway through a project and it would really slow down the speed at which I could hack something together.

working with tasks

While writing Understanding Concurrency in Elixir I started to grasp processes more than I have before. Working with them more closely has strengthened the concepts in my own mind.

understanding concurrency

Concurrency in Elixir is a big selling point for the language, but what does it really mean for the code that we write in Elixir? It all comes down to Processes. Thanks to the Erlang Virtual Machine, upon which Elixir is built, we can create process threads that aren't actual processes on your machine, but in the Erlang VM. This means that in an Elixir application we can create thousands of Erlang processes without the application skipping a beat.

composing ecto queries

Ecto is an Elixir library, which allows you to define schemas that map to database tables. It's a super light weight ORM, (Object-Relational Mapper) that allows you to define structs to represent data.

streaming datasets

We often think about Streaming as being the way we watch multimedia content such as video/audio. We press play and the content is bufferred and starts sending data over the wire. The client receiving the data will handle those packets and show the content, while at the same time requesting more data. Streaming has allowed us to consume large media content types such as tv shows or movies over the internet.

elixir queues

A Queue is a collection data structure, which uses the FIFO (First In, First Out) method. This means that when you add items to a queue, often called enqueuing, the item takes its place at the end of the queue. When you dequeue an item, we remove the item from the front of the queue.

composing plugs

Elixir is a functional language, so it’s no surprise that one of the main building blocks of the request-response cycle is the humble Plug. A Plug will take connection struct (see Plug.Conn) and return a new struct of the same type. It is this concept that allows you to join multiple plugs together, each with their own transformation on a Conn struct.

elixir supervision trees

A Supervision Tree in Elixir has quite a number of parallels to how developers using React think about a component tree. In this article I will attempt to describe parallel concepts between the two - and if you've used React and are interested in functional programming, it might prompt you to take a look at Elixir.

surviving tech debt

Technical debt is a potentially crippling disease that can take over your codebase without much warning. One day, you’re building features, the next, you struggle to untangle the mess you (or maybe your team) has created.

pattern matching elixir

Before being introduced to Elixir, a functional programming language built on top of Erlang, I had no idea what pattern matching was. Hopefully, by the end of this article you will have at least a rudimentary understanding of how awesome it is.

first impressions elixir

Elixir is a functional programming language based on Erlang. I’m told it’s very similar to Ruby, with a few tweaks and improvements to the developer experience and language syntax.

write unit tests

Unit testing can sometimes be a tricky subject no matter what language you’re writing in. There’s a few reasons for this: